Electronic--mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations.

نویسندگان

  • Mingyuan Huang
  • Tod A Pascal
  • Hyungjun Kim
  • William A Goddard
  • Julia R Greer
چکیده

We present the in situ nanoindentation experiments performed on suspended graphene devices to introduce homogeneous tensile strain, while simultaneously carrying out electrical measurements. We find that the electrical resistance shows only a marginal change even under severe strain, and the electronic transport measurement confirms that there is no band gap opening for graphene under moderate uniform strain, which is consistent with our results from the first-principles informed molecular dynamics simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strain shielding from mechanically activated covalent bond formation during nanoindentation of graphene delays the onset of failure.

Mechanical failure of an ideal crystal is dictated either by an elastic instability or a soft-mode instability. Previous interpretations of nanoindentation experiments on suspended graphene sheets,1,2 however, indicate an anomaly: the inferred strain in the graphene sheet directly beneath the diamond indenter at the measured failure load is anomalously large compared to the fracture strains pre...

متن کامل

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

Mechanical modeling of graphene using the three-layer-mesh bridging domain method

Recently developed three-layer-mesh bridging domain method (TBDM) enhanced the conventional bridging domain method (BDM) by (1) mitigating the temperature cooling effect on the atoms in the bridging domain, and (2) employing a mesh-independent physics-based discrimination between thermal and mechanical atomic motions. In this paper, we present the new enhancements for the TBDM to achieve an app...

متن کامل

Atomistic Calculation of Mechanical Behavior

Mechanical behavior is stress-related behavior. This can mean the material response is driven by externally applied stress (or partially), or the underlying processes are mediated by an internal stress field; very often both are true. Due to defects and their collective behavior [1], the spatiotemporal spectrum of stress field in a real material tends to have very large spectral width, with non...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2011